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Finite-time degeneration for variants
of Teichmüller harmonic map flow

Craig Robertson and Melanie Rupflin

Abstract

We consider the question of whether solutions of variants of Teichmüller harmonic map flow from
surfaces M to general targets can degenerate in finite time. For the original flow from closed
surfaces of genus at least 2, as well as the flow from cylinders, we prove that such a finite-time
degeneration must occur in situations where the image of thin collars is ‘stretching out’ at a

rate of at least inj(M, g)−( 1
4+δ), and we construct targets in which the flow from cylinders must

indeed degenerate in finite time. For the rescaled Teichmüller harmonic map flow, the condition
that the image stretches out is not only sufficient but also necessary and we prove the following
sharp result: Solutions of the rescaled flow cannot degenerate in finite time if the image stretches

out at a rate of no more than |log(inj(M, g))| 12 , but must degenerate in finite time if it stretches

out at a rate of at least |log(inj(M, g))| 12+δ for some δ > 0.

1. Introduction and results

Teichmüller harmonic map flow is a geometric flow, introduced by Topping and the second
author in [10], which is designed to flow surfaces to minimal surfaces. Given any closed
orientable surface M and any compact Riemannian manifold (N, gN ), the flow evolves both a
map u : M → N and a constant curvature metric g on the domain M (with Kg ≡ 1, 0,−1
for surfaces of genus γ = 0, 1,� 2) by the gradient flow of the Dirichlet energy E(u, g) =
1
2

´
M

|du|2g dvg. Solutions of the flow are characterised by

∂tu = τg(u), ∂tg =
η2

4
Pg(Re(Φ(u, g))), (1.1)

where τg(u) is the tension of u, Φ(u, g) is the Hopf differential, Pg denotes the L2-orthogonal
projection onto the space that is formed by the real parts of holomorphic quadratic differentials
and η > 0 is a fixed coupling constant. We refer to [10] for more detail on the definition of
the flow. The results from the joint works [5, 7, 10, 13] of Topping (respectively, Huxol and
Topping) and the second author establish that for any initial data, the flow (1.1) admits a
global weak solution which decomposes the initial map into a collection of minimal surfaces.
This solution is smooth away from finitely many singular times and we distinguish between two
different types of possible finite-time singularities: If the injectivity radius remains bounded
away from zero as t approaches a singular time T < ∞, then the metric component of the flow
remains regular across T , while the singularity of the map component is caused by the bubbling
off of a finite collection of harmonic spheres, a phenomenon that is well known already from
the theory of classical harmonic map flow, cf. [15]. Here, we are concerned with the second
type of possible finite-time singularities in which the metric degenerates due to the injectivity
radius of (M, g) tending to zero as t approaches a finite time T .
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We remark that this second type of finite-time singularities is excluded if the domain is a
torus, in which case an equivalent flow was already introduced and studied by Ding, Li and
Liu in [2], since the Teichmüller space of the torus (equipped with the Weil–Petersson metric)
is complete.

For higher genus surfaces, the delicate analysis in [11] guarantees that if the target (N, gN )
has non-positive curvature, or more generally if the target supports no bubbles, then solutions
of (1.1) cannot degenerate in finite time. This naturally raises the question of whether solutions
of the flow can degenerate in finite time at all and if so, what mechanism can lead to such a
finite-time degeneration.

Before we formulate our answers to the above questions, we remark that a careful analysis of
the flow at such potential finite-time degenerations has been carried out in the joint works [12,
13] of Topping and the second author and recall the following properties of solutions (u, g) of the
flow: If inj(M, g(t)) → 0 as t ↑ T for some T < ∞, then there are a finite number of geodesics
σj(t) in (M, g(t)), with σj(t) homotopic to σj(t′), whose length �j(t) = Lg(t)(σj(t)) → 0 as
t ↑ T . These geodesics are surrounded by long thin collar neighbourhoods C(σj(t)) which are
isometric to cylinders ([−X(�j(t)), X(�j(t))] × S1, ρ2(s)(ds2 + dθ2)), compare Lemma A.1 in
the Appendix. On the thick part of these collars, and indeed on the thick part of the whole
surface, the metric converges as described in [12, 13] and so does the map component, up to the
usual bubbling off of harmonic spheres. The results of [13] also ensure that away from finitely
many regions where further bubbles may form, the map component u maps the degenerating
part of the collar very close to curves in the sense that the oscillation of u over circles {s} × S1

tends to zero, see [13] for details. As already seen in [11], we furthermore know that the
behaviour of the map component u away from the degenerating part of a collar has hardly any
influence on the evolution of the length of the central geodesic of such a thin collar.

This raises the question of what behaviour of the map component on the degenerating parts
of a collar can be responsible for a degeneration of the metric. As we shall see, the driving
force for a finite-time degeneration of the flow is not merely the formation of a bubble on a
very thin collar in the domain but rather a very stretched-out image in the target of such a
thin collar. It is hence the behaviour of the map component on the long cylinders connecting
different bubble regions on the degenerating part of the collar (or connecting them to the thick
part of the surface) that can force the flow to degenerate. To be more precise, we shall see
that if the length of one of the curves in the target close to which these cylinders are mapped
is large compared to �−

1
4 , where � is the length of the central geodesic of the corresponding

collar in the domain, then finite-time degeneration must occur. Such a phenomenon can, for
example, be caused by the formation of a winding bubble on the collar as we shall discuss in
detail in Section 4; compare also [16] where the existence of winding singularities of classical
harmonic map flow was established.

As a measure of how long these curves in the image are we shall consider

L (u, C(σ)) :=
ˆ X(�)

−X(�)

 
S1

|us| dθ ds, (1.2)

(s, θ) collar coordinates on the collar C(σ) around a simple closed geodesic σ, cf. Lemma A.1.
Our first main result establishes that degeneration in finite time must occur if L (u, C(σ))

is of order �−( 1
4+δ) for some δ > 0. We stress that we do not ask that L (u, C(σ)) becomes

unbounded, which would already amount to imposing a priori that the solution degenerates in
finite time, but just ask for a suitable relation between L (u, C(σ)) and the length of the central
geodesic of the corresponding collar, and of course that � is below some fixed threshold. For
suitable targets, such as the warped products that we construct in Section 4, these properties
can be proven to hold true for all maps with suitable symmetries and energy bounds, which
will allow us to obtain examples of finite-time degeneration in Section 4.
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Our main results, which we state in Theorems 1.1 and 1.2 below, apply not only for solutions
of the flow (1.1), respectively, (1.5), on closed surfaces of genus at least 2, but also for the
corresponding flow on cylinders. In Appendix A.1, we recall the relevant properties of the
flow (1.1) from cylinders introduced in [8], which is designed to flow to minimal surfaces with
prescribed boundary curves. We note that in this case, one considers (1.1) together with Plateau
boundary conditions. However, as our analysis will be carried out in the interior of the domain,
the specific nature of the boundary conditions turns out to be irrelevant in our proofs, and all
we will require of solutions of (1.1) is that they satisfy an energy inequality of the form

E(u(t1), g(t1)) − E(u(t2), g(t2)) � c

ˆ t2

t1

‖∂tu‖2
L2(M,g) + ‖∂tg‖2

L2(M,g) dt for some c > 0 (1.3)

for almost every t1 < t2, as expected for a gradient flow, and, in case N is non-compact, that
for almost every t, the image of u(t) is bounded. We note that these properties are satisfied in
particular for the solutions obtained in [7, 8, 13], and note that for the (unique) weak solutions
of the flow on closed domains which have non-increasing energy, we indeed have

dE

dt
= −

ˆ
M

|τg(u)|2 +
(η

4

)2

|Pg(Re(Φ(u, g)))|2 dvg, (1.4)

away from finitely many singular times.

Theorem 1.1. Let M be either a closed oriented surface of genus γ � 2 or a cylinder, let
(N, gN ) be a complete Riemannian manifold with sectional curvature bounded from above by
some κ̄ ∈ R and let E0 < ∞, c0 > 0, and δ ∈ (0, 1) be any fixed numbers. Then there exists a
number �̄ > 0 depending only on E0, c0, δ, the genus of M (respectively, the fixed constant d
in the definition (A.1) of the flow on cylinders) and κ̄ so that the following holds true:

Let (u, g) be a weak solution of (1.1) with E(u, g) � E0 which satisfies the energy inequality
(1.3) and which is defined on an interval [0, T ) that is maximal in the sense that T = ∞ or
inft∈[0,T ) inj(M, g(t)) = 0. Suppose that there exists a homotopically non-trivial simple closed
curve σ0 in M , a number ε1 > 0 and a time T1 < T so that for every t ∈ [T1, T )

(i) the length �(t) of the simple closed geodesic σ(t) homotopic to σ0 satisfies �(t) � �̄, and
(ii) for those t ∈ [T1, T ) for which ‖τg(u)(t)‖L2(M,g(t)) � ε1, we furthermore have that

L (u(t), C(σ(t))) � c0 �(t)−
1
4 (1+δ), where L is defined in (1.2).

Then T < ∞, that is, the solution (u, g) of the flow (1.1) must degenerate in finite time.

Here, we call (u, g) a weak solution of (1.1) if g is a Lipschitz curve of hyperbolic metrics
that satisfies the second equation in (1.1) for almost every t and u ∈ H1([0, T ) ×M,N)
(respectively, u ∈ H1

loc if T = ∞) is a weak solution of the first equation in (1.1), where we
may assume without loss of generality that N is embedded in some Euclidean space by Nash’s
embedding theorem.

While it would be interesting to know if the rate �−( 1
4+δ) can be improved, a much more

important question is whether the stretching out of collars is not only a sufficient but also a
necessary condition for finite-time degeneration, or conversely if there are solutions of (1.1) that
degenerate in finite time but for which the quantity L introduced in (1.2) remains bounded.

For weak solutions of the rescaled flow,

0 = τg(u), ∂tg = Pg(Re(Φ(u, g))), (1.5)

which was introduced by Huxol in [4], we shall prove that the flow degenerates if and only if the
image is stretching out, and indeed that finite-time degeneration is excluded if L (u, C(σ)) is
controlled by log(�−1)

1
2 , while any growth rate of L (u, C(σ)) of order log(�−1)

1
2+δ, δ > 0, will
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force the solution to degenerate in finite time. Here we say that (u, g) is a weak solution of (1.5)
if the maps u(t) are harmonic with bounded energy and g is a Lipschitz curve of hyperbolic
metrics for which (1.5) is satisfied for almost every time.

Theorem 1.2. Let M be either a closed oriented surface of genus γ � 2 or a cylinder and
let (N, gN ) be a complete Riemannian manifold with sectional curvature bounded from above.

Let (u, g) be a weak solution of (1.5) defined on an interval [0, T ) which is maximal in the
sense that T = ∞ or inf [0,T ) inj(M, g(t)) = 0. Then the following hold true.

(i) Suppose that there exist C1 < ∞ and �̄ ∈ (0, 1) so that for every t ∈ [0, T ) and every
simple closed geodesic σ(t) ⊂ (M, g(t)) with length �(t) = Lg(t)(σ(t)) � �̄, we have

L (u(t), C(σ(t))) � C1 log(�(t)−1)
1
2 .

Then T = ∞, that is, the flow cannot degenerate in finite time.
(ii) Conversely for any numbers δ, c0 > 0, there exists a constant �̄ ∈ (0, 1) (with the same

dependencies as in Theorem 1.1), so that the following holds true.
Suppose that there exists a homotopically non-trivial simple closed curve σ0 ⊂ M and a number
T1 < T so that on [T1, T ), we have �(t) = Lg(t)(σ(t)) � �̄ and

L (u(t), C(σ(t))) � c0 log(�(t)−1)
1
2 (1+δ),

σ(t) the unique geodesic in (M, g(t)) homotopic to σ0. Then T < ∞, that is, the flow must
degenerate in finite time.

In Section 4, we will construct settings in which our main results apply, thus establishing
that finite-time degeneration does indeed occur for both variants of the flow from cylinders.

Theorem 1.3. Let (N, gN ) be a complete Riemannian manifold of bounded sectional
curvature as constructed in Section 4 and let u0 : [−1, 1] × S1 → N and g0 be any pair of
initial map and metric as described in Lemma 4.3. Then the solution of (1.1) degenerates in
finite time.

Furthermore, choosing (Nc, gNc
) to be a compact Riemannian manifold as constructed in

the last part of Section 4, we have that any weak solution of the rescaled flow (1.5) with map
component as described in Remark 4.7 must degenerate in finite time.

2. Proof of Theorem 1.1

In this section, we prove our main result for solutions of the flow (1.1). We initially carry out
this proof for smooth solutions and explain at the end of the section what minor modifications
are needed to prove the result also for weak solutions.

We first recall that the evolution of the length of a simple closed geodesic under Teichmüller
harmonic map flow is essentially determined by a weighted integral of the Hopf differential
Φ(u, g) = (|us|2 − |uθ|2 − 2i〈us, uθ〉)(ds + idθ)2 of u over the corresponding collar neighbour-
hood C(σ). To be more precise, let (u, g) be a solution of (1.1) defined on either a closed
surface of genus at least 2 or on a cylinder and let σ0 be a simple closed curve in M which
is homotopically non-trivial. If M is a closed surface of genus at least 2, then [11, Lemma
2.3] asserts that the evolution of �(t) = Lg(t)(σ(t)), σ(t) the unique geodesic homotopic to σ0,
under (1.1), is so that∣∣∣∣∣ ddt log(�−1) − η2

16π3
· �
ˆ X(�)

−X(�)

ˆ
S1

(
|us|2 − |uθ|2

)
ρ−2 dθ ds

∣∣∣∣∣ � C� η2E0, (2.1)
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(s, θ) ∈ [−X(�), X(�)] × S1 collar coordinates on C(σ) ⊂ M , in which the metric is given by
g = ρ2(ds2 + dθ2), compare Lemma A.1. Here C depends only on the genus of the surface.

As remarked in [8, Lemma 4.4] and its proof, the same estimate applies also if M is a cylinder,
now for a constant C that only depends on the fixed parameter d > 0 from the definition (A.1) of
the metric component of the flow on cylinders, compare Appendix A.1. For cylinders, the collar
C(σ) agrees with the whole cylinder and is isometric to ([−X(�), X(�)] × S1, ρ2(ds2 + dθ2))
where ρ is still given by (2.2) but now X(�) = 2π

� (π2 − arctan( �
d )).

To treat both situations at the same time, in the following, we consider maps u : C(�) →
(N, gN ) that are defined on hyperbolic cylinders of the form

(C(�), g) ∼= (
[−X(�), X(�)] × S1, ρ2(ds2 + dθ2)

)
, ρ(s) =

�

2π
cos

(
�

2π
s

)−1

, (2.2)

where we ask that X(�) > 0 is so that for some c̄1,2 > 0

2π
�

(π
2
− c̄1�

)
� X(�) � 2π

�

(π
2
− c̄2�

)
if � ∈ (0, arsinh(1)). (2.3)

We note that for collars in closed hyperbolic surfaces, (2.3) holds true for universal constants
c̄1,2 > 0, while for cylinders, the constants c̄1,2 depend only on the fixed constant d > 0 used
in the definition of the metrics (A.1), compare Appendix A.1 and [9].

As a first step towards the proof of Theorem 1.1, we show that for any map from such a
hyperbolic cylinder, the weighted integral of the Hopf differential appearing in (2.1) is bounded
from below by the following estimate.

Lemma 2.1. Let (N, gN ) be a complete Riemannian manifold with sectional curvature
bounded from above by some κ̄ ∈ R. Then for any smooth map u : C = C(�) → (N, gN )
from a hyperbolic cylinder (C, g) as in (2.2) and (2.3) with � ∈ (0, arsinh(1)), and any
J ⊂ [−X(�), X(�)], we have

�

ˆ
J×S1

(
|us|2 − |uθ|2

)
ρ−2 dθ ds � −C · (1 + ‖τg(u)‖2

L2(C,g)) · (1 + log(�−1)), (2.4)

where C depends only on κ̄, an upper bound E0 on the energy of u and c̄1,2 > 0 from (2.3).

Combining Lemma 2.1 with (2.1) hence tells us that for solutions of (1.1), we may always
bound

d

dt
log(�−1) � −C · (1 + ‖τg(u)‖2

L2(C,g)) · [1 + log(�−1)] − C�. (2.5)

We shall apply this very weak lower bound at those times t where we do not have good control
on the tension, and hence, in the setting of Theorem 1.1, do not impose a lower bound on
L (u, C). Conversely, for maps u for which the assumption (ii) of Theorem 1.1 is satisfied, we
obtain a far stronger bound.

Lemma 2.2. Suppose that in the setting of Lemma 2.1, we have additionally that

L (u, C(�)) :=
ˆ X(�)

−X(�)

 
S1

|us| dθ ds � c0 �
− 1

4 (1+δ), (2.6)

for some c0 > 0 and some δ ∈ (0, 1). Then

�

ˆ
C

(|us|2 − |uθ|2
)
ρ−2 dθ ds � c1�

−δ − C
(
1 + ‖τg(u)‖2

L2(C,g)
)(

1 + log(�−1)
)

(2.7)

for some c1 > 0 and C ∈ R that depend only on c0, δ and as always κ̄, E0 and c̄1,2 > 0.
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We can now combine Lemma 2.2 with (2.1) to conclude that for solutions (u, g) of (1.1) and
times t with ‖τg(t)(u(t))‖L2(M,g(t)) � 1, we have

d

dt
log(�−1) � c1 �

−δ − C · [1 + log(�−1)] − C�, (2.8)

for collars C(σ(t)) around geodesics of length �(t) ∈ (0, arsinh(1)) on which (2.6) holds. Given
any numbers c0 > 0 and δ ∈ (0, 1), we can and will choose �̄ ∈ (0, 1) sufficiently small so that
for � ∈ (0, �̄), the first term in the above expression dominates, say so that c1

2 �−δ � C[1 +
log(�−1)] + C�. Hence (2.8) implies that if (u, g) is a solution of (1.1), then

d

dt
log(�−1) � c1

2
�−δ whenever (2.6) holds, � ∈ (0, �̄) and ‖τg(u)‖L2(M,g) � 1. (2.9)

We shall give the proof of these two lemmas later and first explain how they can be used to
prove Theorem 1.1.

Proof of Theorem 1.1. Let (u, g) and σ(t) be as in Theorem 1.1 and let �(t) = Lg(t)(σ(t)).
We let D := {t ∈ [T1, T ) : ‖τg(u)(t)‖L2(M,g(t)) � ε1} be the set of times where the second
assumption of the theorem ensures that (2.6) holds on C(σ(t)). As we may assume without loss
of generality that ε1 � 1 and that �̄ ∈ (0, 1) is chosen as above we may hence bound d

dt log(�−1)
from below according to (2.9) on D. Conversely, for times t /∈ D, we bound d

dt log(�−1) using
(2.5). Combined we obtain that f(t) := 1 + log(�(t)−1) satisfies a differential inequality of the
form

f ′(t) � c1
2
�(t)−δ 1D − g(t)f(t) = c2 e

δf(t) 1D − g(t)f(t) on [T1, T ). (2.10)

Here g = C · 1Dc · (1 + ‖τg(u)‖L2(C,g)), which we note is integrable over [T1, T ), even if T = ∞,
since the energy inequality (1.3) assures that L1(Dc) � CE0 ε

−2
1 < ∞.

Hence f(t) � F (t) := exp(
´ t

T1
g(t′) dt′) · f(t) � e‖g‖L1 f(t) on [T1, T ), which allows us to

conclude from (2.10) that

F ′(t) � c2 e
δf(t) 1D � c2 e

δ̃F (t) 1D,

where δ̃ = δe−‖g‖L1 > 0. Integration over [T1, t) then yields

0 < e−δ̃F (t) � e−δ̃F (T1) − c2δ̃ · L1(D ∩ [T1, t)) � 1 − c2δ̃ · (t− T1 − CE0 ε
−2
1 ),

which leads to a contradiction for t sufficiently large. Hence, we cannot have that T = ∞, so
the solution has to degenerate in finite time. �

To prove the above Lemmas 2.1 and 2.2, we shall use the following standard estimates on
the angular energy and on the H2-norm of maps from Euclidean cylinders on regions with
low energy, compare, for example, [3, 5, 15]. Here and in the following we write for short
CΛ(s) := [s− Λ, s + Λ] × S1 and CΛ = CΛ(0) and will equip these cylinders with the Euclidean
metric gE = ds2 + dθ2 unless specified otherwise.

Lemma 2.3 (Compare, for example, [3, 5, 15]). Let (N, gN ) be a complete Riemannian
manifold with sectional curvature bounded from above by some κ̄ ∈ R. Then there exist
numbers ε0 = ε0(κ̄) > 0 and C = C(κ̄) ∈ R so that the following holds true for H2 maps
u : CX → (N, gN ) away from:

A := {s : |s| � X − 1 and E(u;C1(s)) � ε0} ∪ [−X,−X + 1] ∪ [X − 1, X].
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Let ϕ0 ∈ C∞
c ((−1, 1),R+) be a fixed cut-off function with ϕ0 ≡ 1 on [− 1

2 ,
1
2 ] and |ϕ′

0| + |ϕ′′
0 | �

C. Then for any s0 /∈ A, we have that
ˆ

ϕ0(· − s0)2 |∇2u|2 dθ ds � CE(u;C1(s0)) + C

ˆ
ϕ0(· − s0)2 |τgE(u)|2 dθ ds, (2.11)

where ∇2u is the (intrinsic) Hessian of the map u : (C , gE) → (N, gN ), that is, ∇2u = ∇du is
computed using the connection on T ∗C ⊗ u∗TN induced by the Levi–Civita connections.

Furthermore, the angular energy ϑ(s) =
´
{s}×S1 |uθ|2 dθ satisfies

ϑ(s) � CE0 exp(−distgE(s,A)) + C

ˆ
CX

|τgE(u)|2 e−|s−q| dq dθ, (2.12)

for every s with distgE(s,A) � 1, E0 an upper bound on the energy of u.

We recall that the tension with respect to the hyperbolic metric ρ2(ds2 + dθ2) is related to the
Euclidean tension by τg(u) = ρ−2 τgE(u). We also note that sup|q|�X(�) e

−|s−q|/2ρ(q) � Cρ(s)
for a constant C that depends only on an upper bound on ρ on the collar, and hence only on c̄1
from (2.3) and an upper bound on �. We hence immediately obtain from (2.12) that for maps
from hyperbolic collars as considered in Lemmas 2.1 and 2.2

ϑ(s) � C exp(−distgE(s,A)) + Cρ(s)2
ˆ
C
|τg(u)|2 e−|s−q|/2 dvg for s /∈ A, (2.13)

A as in the above Lemma 2.3, compare also [11].
In the proofs of both Lemmas 2.1 and 2.2, we will encounter weighted integrals of this angular

energy and as such it will be useful to split our collar C = C(�) into B × S1, for

B :=
{
s ∈ [−X(�), X(�)] : distgE(s,A) � 4 log(ρ(s)−1) + 2

}
, (2.14)

where (2.13) yields strong bounds on angular energies, and Bc × S1, whose measure is very
small compared to X(�) if � is small, compare Lemma 2.4 below.

We first note that given any map u from a collar as in Lemma 2.1 or Lemma 2.2 and any
subset K ⊂ B, we can use (2.13) to estimate

�

ˆ
K×S1

|uθ|2ρ−2 dθ ds � C�

ˆ
B

(
ρ2(s) +

ˆ
C
|τg(u)|2 e−|s−q|/2 dvg

)
ds

� C�(1 + ‖τg(u)‖2
L2(C,g)), (2.15)

where we use in the last step that
´
ρ2 � Area(C, g) and that the area of the collars we consider

is bounded above in terms of only c̄1. In the setting of Lemma 2.1, we will use this bound to
simply estimate

�

ˆ
(J∩B)×S1

(
|us|2 − |uθ|2

)
ρ−2 dθ ds � −C�(1 + ‖τg(u)‖2

L2(C)), (2.16)

while in the setting of Lemma 2.2, we will combine the above bound on the angular energy
with a much stronger lower bound on

´
B×S1 |us|2ρ−2 that we will later derive from the main

assumption (2.6) of that lemma.
In both cases, we have to consider the high-energy regions Bc separately from B and it will

be useful to note that Bc has the following simple properties.

Lemma 2.4. Let u be a map from a hyperbolic collar C as in Lemma 2.1 with energy
bounded by E0, and let B be defined by (2.14). Then the number of connected components
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of Bc is bounded above by E0
ε0

+ 2, and the length of each connected component Ij of Bc is
bounded by

|Ij | � C ·
(
supIj log(ρ−1) + 1

)
, (2.17)

for C = 8(E0
ε0

+ 2). Furthermore, for points contained in the same connected component, we
have that the conformal factor is of comparable size, namely

supIj ρ � C infIj ρ, and hence in fact |Ij | � C · (infIj log(ρ−1) + 1) (2.18)

for a constant C that depends only on ε0 and E0, and the constant c̄1 from (2.3).

Proof of Lemma 2.4. The first claim immediately follows from the definition of B as each
connected component Ij of Bc must either contain ±X(�) or an interval of length 2 with
energy at least ε0. Similarly, for each connected component Ij of Bc, we can choose a maximal
family of disjoint intervals Ikj ⊂ Ij of length 2 with energy at least ε0 and note that the
total number of such intervals is bounded by E0

ε0
. As each point in Ij will have distance at

most 4 supIj log(ρ−1) + 3 from one of these intervals or from one of the endpoints ±X(�), we
hence obtain that (2.17) holds. To prove (2.18), we first recall that since |∂s log(ρ))| � ρ we
have e−1ρ(s0) � ρ(s) � eρ(s0) for any points s, s0 ∈ [−X(�), X(�)] with |s− s0| � e−1ρ(s0)−1,
compare (A.4). If supIj ρ

−1 is large enough so that |Ij | � C(log(supIj ρ
−1) + 1) is smaller than

e−1 supIj ρ
−1, we hence obtain that (2.18) holds true for C = e. Conversely, for any other

connected component Ij of B, we have a uniform upper bound on supIj ρ
−1 (depending only

on ε0 and E0) and hence a uniform upper bound on |Ij |, so (2.18) follows from (A.3). �

We are now in a position to complete the proofs of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. We first note that if � � �1, for some number �1 > 0 determined below,
then (2.4) is trivially satisfied as ρ−2 � 4π2�−2

1 . So, assume that � ∈ (0, �1). In light of (2.16),
it is enough to show that for any given subset J ⊂ [−X(�), X(�)] and each j,

�

ˆ
(J∩Ij)×S1

(|us|2 − |uθ|2
)
ρ−2 dθ ds � −C · (1 + ‖τg(u)‖2

L2(C,g)) · (1 + log(�−1)),

where Ij are the connected components of the set Bc whose properties were discussed
in Lemma 2.4 and whose measure satisfies in particular L1(Bc) � C(1 + log(�−1)) < 2X(�),
provided that �1 is chosen suitably small. So, B must be non-empty and hence each connected
component Ij of Bc has at least one endpoint sj which is an element of B. Writing for short
ψ(s) :=

´
{s}×S1 |us|2 − |uθ|2 dθ, we can therefore bound for each s ∈ Ij

ψ(s) � ψ(sj) −
ˆ
Ij

|∂sψ| ds � −ϑ(sj) −
ˆ
Ij

|∂sψ| ds

� −Cρ4(sj) − Cρ2(sj)‖τg(u)‖2
L2 −

ˆ
Ij

|∂sψ| ds,

where we applied (2.13) in the last step and where norms are computed over the corresponding
collar. Using (2.18), |Ij | � C(log(�−1) + 1) and that �ρ−1 � 2π, we may hence bound

�

ˆ
J∩Ij

ψ(s)ρ−2(s) ds � −C�|Ij | · ρ2(sj) − C�|Ij | · ‖τg(u)‖2
L2 − C|Ij |

ˆ
Ij

ρ−1|∂sψ|

� −C(1 + log(�−1)) ·
[
1 + ‖τg(u)‖2

L2 +
ˆ
Ij

ρ−1|∂sψ|
]
.

(2.19)
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We now complete the proof of Lemma 2.1 by proving that
´
ρ−1|∂sψ| � C(1 + ‖τg(u)‖2

L2).
To this end, we note that ψ can be viewed as an integral of the real part of the function
φ = |us|2 − |uθ|2 − 2i〈us, uθ〉 which represents the Hopf differential Φ = φ dz2 of u in collar
coordinates. As the antiholomorphic derivative of the Hopf differential is controlled in terms
of the (Euclidean) tension, in particular |∂sRe(φ) − ∂θIm(φ)| = |Re(∂̄φ)| � 2|τgE(u)||du|gE , we
have thatˆ X(�)

−X(�)

ρ−1|∂sψ| ds � 2
ˆ
C
ρ−1|τgE(u)||du|gE

dθ ds � CE
1
2
0 ‖τg(u)‖L2(C,g) � C(1 + ‖τg(u)‖2

L2(C,g)),

where we used τg(u) = ρ−2 τgE(u) in the penultimate step. Together with (2.16) and (2.19),
this completes the proof of the lemma. �

Proof of Lemma 2.2. We first remark that it suffices to consider the case that � ∈ (0, �2) for a
constant �2 > 0 chosen below, as for larger values of � the claim already follows from Lemma 2.1.
To prove the lower bound (2.7) on the weighted integral

´
ρ−2ψ ds, ψ :=

´
{s}×S1 |us|2 − |uθ|2 dθ

as above, we divide [−X(�), X(�)] = K ∪Kc into the subset K ⊂ B defined below, and its
complement Kc on which we shall simply apply Lemma 2.1 to bound

�

ˆ
Kc

ρ−2ψ ds � −C · (1 + ‖τg(u)‖2
L2(C,g)) · (1 + log(�−1)). (2.20)

More precisely, we define K = {s ∈ B : injg(s, ·) < ε(�)}, for ε(�) := Λ · � 1
2 (1+δ) and Λ > 0

determined below, which we know is non-empty for � ∈ (0, �2) since δ < 1, provided that �2
is sufficiently small. We will prove below that this choice of ε(�) ensures that the (Lebesgue)
measure of Kc is small enough so that assumption (2.6) implies also that

1
2π

ˆ
K×S1

|us| � c0
2
�−

1
4 (1+δ). (2.21)

At the same time, the hyperbolic area of K × S1 is also small, namelyˆ
K×S1

ρ2 = Area(K × S1, g) � Area(ε(�)-thin(C), g) � Cε(�) � C�
1
2 (1+δ),

compare, for example, [14, (A.2)]. Combined, these two estimates imply that

�

ˆ
K×S1

|us|2 ρ−2 dθ ds � �

(ˆ
K×S1

ρ2 dθ ds

)−1

·
(ˆ

K×S1
|us| dθ

)2

� c1�
−δ

for some c1 > 0. We note that combining this estimate with (2.20) and the estimate on the
angular energy on K already obtained in (2.15) immediately yields the claim of the lemma.

It hence remains to prove that (2.21) holds true for a suitably chosen Λ. To this end, we
first recall that ε-thin(C) = {p ∈ C : injg(p) < ε} is given in collar coordinates by a cylinder
(−Xε(�), Xε(�)) × S1, for a number Xε(�) which is such that X(�) −Xε(�) � Cε−1, compare
(A.5). Combined with the properties of Bc obtained in Lemma 2.4, this yields

L1(Kc) �
∑
j

|Ij | + Cε−1 � C(log(�−1) + 1) + CΛ−1�−
1
2 (1+δ).

For Λ sufficiently large and �2 > 0 sufficiently small, we hence obtain that for � ∈ (0, �2)

1
2π

ˆ
Kc×S1

|us| dθ ds � C(L1(Kc))
1
2 � C

[
(log(�−1))

1
2 + 1 + Λ− 1

2 �−
1
4 (1+δ)

]
� c0

2
�−

1
4 (1+δ).

Combined with (2.6), this implies the claim (2.21), which completes the proof of the lemma. �
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Remark 2.5. The above proof of Theorem 1.1 applies with only minor modifications if (u, g)
is a weak solution of (1.1): For almost every t, the maps u(t) are of class H2 in the interior
of M so Lemmas 2.3 and 2.4 may be applied. Lemmas 2.1 and 2.2 also apply without change
at these times as their proofs are based only on Lemmas 2.3 and 2.4. Since g is Lipschitz, and
hence differentiable almost everywhere, we can thus estimate d�

dt precisely as in the above proof
for almost every time, which yields the result.

3. Proof of Theorem 1.2

We now turn to the proof of our second main result which gives a sharp criterion for finite-
time degeneration for solutions of the rescaled flow. For this we exploit that at each time t,
the map component u(t) of a solution of (1.5) is a harmonic map. We note that harmonic
maps on degenerating surfaces have been studied by Chen–Tian [1] and Zhu [18]. We recall in
particular that the Hopf differential of harmonic maps is holomorphic which implies that the
quantity ψ(s) =

´
{s}×S1 |us|2 − |uθ|2 dθ considered above is constant on each collar around a

simple closed geodesic σ(t) in (M, g(t)). Knowing that a map is harmonic furthermore allows
us to prove the following stronger relationship between ψ and L (u, C(σ)), which will be the
main tool in the proof of Theorem 1.2.

Lemma 3.1. For any numbers κ̄, C1 ∈ R, respectively, κ̄ ∈ R and δ, c0 > 0, there exist
numbers �̄, C2 > 0, respectively, �̄, c1 > 0 so that the following holds true for any complete
Riemannian manifold (N, gN ) whose sectional curvature is bounded from above by κ̄ and any
hyperbolic collar C(�) as in (2.2) and (2.3) for which � ∈ (0, �̄).

Suppose that u : C(�) → (N, gN ) is a harmonic map for which the quantity L introduced

in (1.2) is bounded above by L (u, C(�)) � C1(log(�−1))
1
2 . Then ψ =

´
{s}×S1 |us|2 − |uθ|2 dθ,

which is constant on the collar, is bounded from above by

ψ � C2�
2[log(�−1) + 1]. (3.1)

Conversely, for harmonic maps u : C(�) → (N, gN ) with L (u, C(�)) � c0(log(�−1))
1
2+δ, we have

ψ � c1�
2 log(�−1(t))1+δ. (3.2)

For the proof of this lemma, we use the following variation of the H2 estimate (2.11) from
Lemma 2.3, in which we can replace the full energy on the right-hand side by only the angular
energy. For the sake of completeness, we include a short proof at the end of this section.

Lemma 3.2. In the setting of Lemma 2.3, we have that for any s0 /∈ Aˆ s0+
1
2

s0− 1
2

ˆ
S1

|∇2u|2dθ ds � C

ˆ s0+1

s0−1

ϑ(s) ds + C ‖τgE(u)‖2
L2(C2(s0),gE), (3.3)

where C depends only on an upper bound on the sectional curvature of (N, gN ).

Given a harmonic map u from a hyperbolic collar as in Lemma 3.1, we can combine the
above lemma with the angular energy estimate of Lemma 2.3 to conclude that for � ∈ (0, 1)

ϑ(s) +
ˆ s+ 1

2

s− 1
2

ˆ
S1

|∇2u|2dθ ds � C�4 on B̃ := {s : distgE(s,A) � 4 log(�−1) + 2}. (3.4)

We also note that the measure of the complement of B̃ ⊂ [−X(�), X(�)] can be bounded as
explained in the first part of the proof of Lemma 2.4, resulting in

L1(B̃c) � C(log(�−1) + 1) � X(�), (3.5)

where the last inequality holds true as � ∈ (0, �̄) for �̄ ∈ (0, 1) chosen sufficiently small.
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Proof of Lemma 3.1. Let u be as in the lemma. In both cases, we compare ψ to
α(s) :=

ffl
{s}×S1 |us| dθ, and already note that

α(s)2 �
 
{s}×S1

|us|2 dθ � ψ + ϑ(s) and that L (u, C(σ)) =
ˆ X(�)

−X(�)

αds. (3.6)

We now estimate

ψ
1
2 · |

√
2πα(s) − ψ

1
2 | =

ψ
1
2√

2πα(s) + ψ
1
2
· |2πα(s)2 − ψ| �

ˆ
{s}×S1

|α(s)2 − |us|2 + |uθ|2| dθ

� C

(ˆ
{s}×S1

∣∣α(s) − |us|
∣∣2 dθ) 1

2
(ˆ

{s}×S1
|us|2 dθ

) 1
2

+ ϑ(s)

� C

(ˆ
{s}×S1

|∇2
s,θu|2 dθ

) 1
2

· [ψ + ϑ(s)]
1
2 + ϑ(s),

where we used (3.6) in both the penultimate and the last step. We thus obtain from (3.4) that

ψ
1
2 · ∣∣ψ 1

2 −
√

2π
ˆ s+ 1

2

s− 1
2

α
∣∣ � C�2 · [ψ 1

2 + �2] for every s ∈ B̃. (3.7)

Suppose now that L (u, C(σ)) � C1 log(�−1)
1
2 . As (3.5) implies that L1(B̃) � X(�) � c�−1 > 0,

we can now combine (3.7) and (3.6) to conclude that in this case,

ψ =
 

˜B
ψ ds � Cψ

1
2

[
X(�)−1

ˆ X(�)

−X(�)

α(s) ds + �2

]
+ C�4 � 1

2
ψ + C�2 log(�−1) + C�4, (3.8)

which gives the claimed bound (3.1) on ψ.
It hence remains to prove that if instead L (u, C(σ)) � c0 log(�−1)

1
2 (1+δ), then we obtain the

lower bound (3.2) on ψ. To this end, we let B̃- be the set of all s ∈ B̃ for which the interval
[s− 1

2 , s + 1
2 ] is fully contained in B̃. We note that since the number of connected components

of B̃ is bounded uniformly in terms of E0 and ε0, we have that L1(B̃ \ B̃-) � C and hence
L1((B̃-)c) � C(1 + log(�−1)), compare (3.5). Thus,ˆ

( ˜B-)c
α � CL1((B̃-)c)

1
2E

1
2
0 � C(log(�−1)

1
2 + 1) � c0

2
log(�−1)

1
2 (1+δ),

where the last estimate holds as we may assume that �̄ was chosen sufficiently small (depending
on c0, δ > 0). Hence, we must have thatˆ

˜B-

α � c0
2

log(�−1)
1
2 (1+δ). (3.9)

We first claim that this implies that ψ � c�4 > 0. Indeed, if we had ψ � c�4, we would have
that α(s) � ϑ(s)

1
2 + c�2 � C�2 for all s ∈ B̃ and hence

´
˜B-
α �

´
˜B α � C� contradicting (3.9) if

�̄ > 0 is sufficiently small.
The right-hand side of (3.7) is hence bounded by C�2ψ

1
2 for every s ∈ B̃, and thus,

ψ
1
2 �

√
2πL(B̃)−1

ˆ
˜B

ˆ s+ 1
2

s− 1
2

α− C�2 � c�

ˆ
˜B-

α− C�2 �
√

2c1� log(�−1)
1
2 (1+δ) − C�2

for some c1 > 0, yielding (3.2) for �̄ sufficiently small. �
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We are now in a position to prove our second main theorem.

Proof of Theorem 1.2. Suppose first that (u, g) is a smooth solution of the rescaled flow
(1.5) and let σ0 ⊂ M be a homotopically non-trivial simple closed curve. We denote by σ(t)
the geodesic in (M, g(t)) homotopic to σ0, and by ψ(t) the corresponding quantity considered
in Lemma 3.1. We note that ψ is related to the principal part of the Fourier expansion
Φ(u, g) =

∑
bje

jz dz2, z = s + iθ on C(σ(t)) by ψ = 2πRe(b0). We also recall that if g is either
a horizontal curve of hyperbolic metrics on a closed surface, that is, such that ∂tg = Re(Ψ(t))
for holomorphic quadratic differentials Ψ, or a curve of metrics on the cylinder as described in
Appendix A.1, then �(t) = Lg(t)(σ(t)) evolves by d�

dt = − 2π2

� Re(b0(Ψ)), see, for example, [17].
In the present situation hence

d

dt
log(�−1) = π�−2 · ψ, (3.10)

which allows us to derive the theorem from Lemma 3.1 as follows:
Suppose first that (u, g) is as in part (i) of the theorem and let �̄ > 0 and C2 be as in

Lemma 3.1. This lemma yields that at any time t ∈ [0, T ) for which �(t) = Lg(t)(σ(t)) ∈ (0, �̄)
we have ψ(t) � C2�(t)2[log(�−1(t)) + 1] on C(σ(t)), and hence also

d

dt
(log(�−1(t)) + 1) � C2π(log(�−1(t)) + 1),

which excludes the possibility that �(t) → 0 in finite time. As this argument applies for every
non-trivial simple closed curve in M , we hence find that the injectivity radius cannot go to
zero in finite time, that is, that a finite-time degeneration of the metric is excluded.

Conversely, if (u, g) and σ(t) are as in part (ii) of the theorem for �̄ chosen as in Lemma 3.1,
then this lemma yields that for every t ∈ [T1, T ), we have ψ(t) � c1�

2 log(�−1(t))1+δ on C(σ(t))
for a number c1 > 0 that is independent of time. Inserting this lower bound on ψ into (3.10)
then immediately gives that

d

dt
log(�−1(t)) � c1π log(�−1)1+δ for t ∈ [T1, T ).

As δ > 0, the solution of the flow must hence degenerate in finite time.
If (u, g) is only a weak solution, the above proof still applies because the maps are still

harmonic and hence smooth in the interior, so we can directly apply Lemma 3.2 at every
time, and obtain the same estimates as above at every time at which the curve of metrics is
differentiable. �

We finally provide a proof of Lemma 3.2 which follows by well-known arguments that have
been used in particular in [3, 15] to establish H2 bounds such as (2.11) in low-energy regions.

Proof of Lemma 3.2. Given any s0 /∈ A, we let ϕ = ϕ0(· − s0), where ϕ0 is a cut-off function
as in Lemma 2.3. As ∇2

s,su = τ(u) −∇2
θ,θu, where we write for short τ = τgE , we have

I :=
ˆ

ϕ2|∇2u|2 =
ˆ

ϕ2
(
|τ(u) −∇2

θ,θu|2 + |∇2
θ,θu|2 + 2|∇2

s,θu|2
)

�
∥∥ϕτ(u)

∥∥2

L2 + 2‖ϕτ(u)‖L2 ·
(ˆ

ϕ2|∇2
θ,θu|2

) 1
2

+ 2
ˆ

ϕ2|∇2
θ,θu|2

+ 4
ˆ

ϕ|ϕ′||uθ| |∇2
s,θu| + 2κ̄

ˆ
ϕ2|uθ|2 |us|2 + 2

ˆ
ϕ2∇2

θ,θu · ∇2
s,su,
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where κ̄ � 0 is an upper bound on the sectional curvature of the target. As the last term is
equal to −2

´
ϕ2|∇2

θ,θu|2 + 2
´
ϕ2τ(u)∇2

θ,θu, we hence obtain that

I � ‖ϕτ(u)‖2
L2 + CI

1
2 ·

[
‖ϕτ(u)‖L2 + ϑ̂(s0)

1
2

]
+ R � C‖ϕτ(u)‖2

L2 + Cϑ̂(s0) +
1
4
I + R,

(3.11)

where we write for short ϑ̂(s0) =
´ s0+1

s0−1
ϑ(s)ds and set R := 2κ̄

´
ϕ2|uθ|2|us|2. Using that

W 1,1
0 ([−1, 1] × S1) embeds continuously into L2([−1, 1] × S1), we may now estimate

R � C
∥∥ϕ|us|2

∥∥
L2 ·

∥∥ϕ|uθ|2
∥∥
L2 � C

∥∥∇(ϕ|us|2)
∥∥
L1 ·

∥∥∇(ϕ|uθ|2)
∥∥
L1

� C
[
E(u;C1(s0)) + E(u;C1(s0))

1
2 ‖ϕ∇2u‖L2

]
·
[
ϑ̂(s0) + ϑ̂(s0)

1
2 ‖ϕ∇2u‖L2

]
� Cε0ϑ̂(s0) + CI

1
2 ·

[
ε0ϑ̂(s0)

1
2 + ε

1
2
0 ϑ̂(s0) + Cε

1
2
0 ϑ̂(s0)

1
2 I

1
2

]
� 1

4
I + Cϑ̂(s0) + Cϑ̂(s0)I.

We can now use the H2 estimate (2.11) from Lemma 2.3 to control the last term in this estimate
by Cϑ̂(s0)I � Cϑ̂(s0)(ε0 + ‖ϕτ(u)‖2

L2) � Cϑ̂(s0) + C‖ϕτ(u)‖2
L2 and insert the resulting bound

on R into (3.11) to obtain the claim of the lemma. �

4. Proof of Theorem 1.3

In this section, we construct settings in which Theorem 1.1 and Theorem 1.2 assure that
solutions of Teichmüller harmonic map flow (1.1), respectively, of the rescaled flow (1.5), from
the cylinder C = [−1, 1] × S1, degenerate in finite time. This smooth target will be obtained
as a warped product N = R ×f Ñ of R with

(Ñ , g
˜N ) := (R3, ρ2

˜N
gE), where ρ2

˜N
= C

˜N exp
(

1 − 1
1 − |x|2

)
1{|x|<1} + 1, (4.1)

for C
˜N > 0 a (large) constant that we choose below. Before we analyse solutions u =

(v, w) : C × [0, T ] → R ×f Ñ of the flow, or even just discuss the choice of the warping function
f , we discuss some key properties of maps w : C → Ñ . To this end, we first note that for
large C

˜N , the metric g
˜N , which is Euclidean outside the Euclidean unit ball but highly

concentrated in {|x|E < 1}, is so that the function r �→ r2ρ2
˜N
(r) has exactly two local extrema

0 < rmax < rmin < 1 on [0,1], where rmax ↓
√

5−1
2 and rmin ↑ 1 as C

˜N → ∞.
We will later choose the w component of our initial map u0 = (v0, w0) of the flow so that its

image is disjoint from the region {|x|E < 1} and first prove the following lower bound on the
area of maps w : C → (Ñ , g

˜N ) which are obtained by continuously deforming such a map.

Lemma 4.1. For any E0 < ∞ and z0 > 1 and for sufficiently large C
˜N (depending on E0

and z0), we have that the following holds true for the metric g
˜N defined in (4.1).

Let (wt)t∈[0,T ) be any continuous family of smooth, rotationally symmetric maps wt : C :=
[−1, 1] × S1 → R

3, wt(x, θ) = (rt(x)eiθ, zt(x)), with fixed boundary values rt(±1) = r0 ∈ (0, z0]
and zt(±1) = ±z0. Suppose that Area( ˜N,g

˜N
)(wt) � E0 for every t ∈ [0, T ) and that the image

of the initial map w0 is disjoint from the Euclidean open unit ball. Then for every t ∈ [0, T )

Area( ˜N,g
˜N

)(wt) � 2π. (4.2)



548 CRAIG ROBERTSON AND MELANIE RUPFLIN

Furthermore, denoting by ψ(p) the angle between p and the positive z-axis and by |p| the
Euclidean distance to the origin, we have that for every t ∈ [0, T )

wt(C ) ∩ {p ∈ R
3 : |p| = rmax and ψ(p) ∈ [π4 ,

3π
4 ]} = ∅. (4.3)

Proof. We will first explain how (4.3) implies (4.2) (for C
˜N sufficiently large), and provide

the proof of (4.3) at the end. We note that (4.3) allows us to conclude that for each t ∈ [0, T ),
there must be an interval [xt

1, x
t
2] ⊂ [−1, 1] such that

|wt| > rmax and ψ(wt) ∈ (π4 ,
3π
4 ) on (xt

1, x
t
2) × S1 with ψ(wt)({xt

1, x
t
2}) = {π

4 ,
3π
4 }.

To see this, we note that the number of such intervals for the initial w0 must be odd as by
assumption |w0| � 1 > rmax on all of C and as the points wt({±1} × S1) of the fixed boundary
circles have ψ coordinate in (0, π

4 ], respectively, [3π4 , π) since r0 � z0. Combined with (4.3),
this property of the boundary data also ensures that along a family of maps (wt) as in the
lemma, such intervals can only be lost or gained in pairs, so their number remains odd, and
so non-zero.

The claim (4.2) hence follows if we prove a lower bound of 2π for the area of any given surface
Sγ that is obtained by rotating a curve γ = |γ|eiψ ∈ R

2, parametrised over some [a, b], around
the z-axis, for which ψ(a) = π

4 , ψ(b) = 3π
4 and |γ| � rmax as well as ψ ∈ (π4 ,

3π
4 ) on (a, b). Given

such a γ, say parametrised by arclength and hence with |γ| · |ψ′| � 1, we can estimate

Area( ˜N,g
˜N

)(Sγ) = 2π
ˆ b

a

ρ2
˜N
◦ γ · |γ| sin(ψ) � 2πmin

[a,b]

(
|γ|2ρ2

˜N
◦ γ

) ˆ b

a

sin(ψ)|ψ′|

� 4πr2
min ρ ˜N (rmin)2 cos

(π
4

)
� 2

√
2πr2

min � 2π

for C
˜N sufficiently large, where we used that the minimum of r �→ r2ρ2

˜N
(r) on [rmax,∞) is

achieved at rmin and that rmin ↑ 1 as C
˜N → ∞.

Finally, to prove the claim (4.3), we show that for C
˜N chosen sufficiently large, the area

of any rotationally symmetric surface with the given boundary conditions that violates (4.3)
must have area larger than E0. So let γ = |γ|eiψ be any smooth curve in R

2, say parametrised
by arclength over some [a, b], with γ(a) = (−z0, r0) and γ(b) = (z0, r0) and suppose that there
exists t0 ∈ (a, b) so that γ(t0) = rmaxe

iψ1 for some ψ1 ∈ [π4 ,
3π
4 ].

Let now ε := min(z0 − 1, 1
10 ) > 0 which ensures in particular that [t0 − ε, t0 + ε] ⊂ [a, b].

Since rmax ↓
√

5−1
2 ≈ 0.62 as C

˜N → ∞, we may assume that C
˜N is large enough to ensure

that 1
2 + 1

10 � rmax � 3
4 − 1

10 so that the above choice of ε furthermore implies that
1
2 � rmax − ε � |γ| � rmax + ε � 3

4 and ψ ∈ [π4 − 2ε, 3π
4 + 2ε] ⊂ [π6 ,

5π
6 ] on [t0 − ε, t0 + ε].

We hence obtain

Area( ˜N,g
˜N

)(Sγ) � Area( ˜N,g
˜N

)(Sγ|[t0−ε,t0+ε]
) = 2π

ˆ t0+ε

t0−ε

ρ2
˜N
◦ γ · |γ| sin(ψ)

� 4πεC
˜N exp

(
1 − (1 − ( 3

4 )2)−1
) · 1

4 ,

which yields that Area( ˜N,g
˜N

)(Sγ) > E0 provided C
˜N = C

˜N (E0, z0) is chosen sufficiently large.
This completes the proof of the claim (4.3) and thus of the lemma. �

We now construct our target as a warped product

N = R ×f Ñ with metric gN = dv2 + f(v) · g
˜N , (4.4)

where the warping function is of the form f = f0(· − v̄), v̄ > 0 chosen later, for f0 as in
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Assumption 4.2. We let f0 : R → [1,∞) be a non-increasing function that satisfies f0 ≡
8 on (−∞, 0] and f0 > 7 on (−∞, 1) for which −f ′

0 is decreasing on [1,∞) with 0 < −f ′
0 � 1

8
and that has one of the following two types of asymptotic behaviours.

(i) For some δ ∈ (0, 1) and c3,Λ > 0, we have that

f0(v) = 1 + c3v
−( 2

1+δ−1) on [Λ,∞).

(ii) For some α, c3,Λ > 0, we have that

f0(v) = 1 + c3e
−α(v−Λ) on [Λ,∞).

We observe that in both cases, the resulting target (N, gN ) is complete and has bounded
curvature, where by construction the curvature bound κ̄ is independent of the choice of v̄ and
will use functions with asymptotics (i) to prove the first part of Theorem 1.3, and functions
with asymptotics (ii) in the proof of the second part of the theorem.

In the following, we consider maps u = (v, w) : C = [−1, 1] × S1 → N with symmetries

v = v(x) = v(−x), w(x, θ) =
(
r(x)eiθ, z(x)

)
with r(x) = r(−x) and z(−x) = −z(x) (4.5)

and fixed boundary data of

v(±1) = 0 and r(±1) =
1
4
, z(±1) = ±z0 > 1. (4.6)

In general, to evolve a given initial map u0 from the cylinder towards a minimal surface
with prescribed boundary curves, one needs to consider (1.1) together with Plateau boundary
condition. However, if our initial map u0 = (v0, w0) is of the above form and if we choose the
initial metric g0 = G�̄ on the cylinder as described in (A.1), then due to the symmetries, this
problem is reduced to solving (1.1) with Dirichlet boundary conditions

u(±1, θ) = u0(±1, θ) (4.7)

and the evolution of the metric reduces to an ordinary differential equation for the length
�(t) of the central geodesic with g(t) = G�(t) as described in (A.1). Thus, standard parabolic
theory yields the existence of a (unique) solution (u, g) of the flow (1.1) along which the energy
decays according to (1.4). We note that this solution remains smooth for all times unless
inj(C , g(t)) → 0 as t ↑ T < ∞, as a singularity of just the map component, which would need to
be caused by the bubbling off of finitely many harmonic spheres, is excluded by the symmetries.

We will thus be able to conclude that the flow degenerates in finite time, provided that we
can establish that the assumptions (i) and (ii) of Theorem 1.1 hold. To this end, we fix the
constant C

˜N in the definition of (Ñ , g
˜N ) so that Lemma 4.1 applies for maps of area no more

than 10π and choose the initial data as follows.

Lemma 4.3. Let (N, gN ) be as in (4.4), where v̄ > 0 is any fixed number. Then there is a
smooth map u0 = (v0, w0) : C → N with the symmetries (4.5) and boundary data (4.6) that
satisfies |w0| � 1 on all of C , and a metric g0 = G�̄ as defined in (A.1) such that E(u0, g0) � 10π.

Proof. For ε > 0 and � > 0 determined below, we construct such a map

u0 = (v0, w0) : (C , G�) ∼=
(
[−X(�), X(�)] × S1, ρ2

�(ds
2 + dθ2)

) → (N, gN )

as follows: We first let Λ1(ε) > 1 be the unique number for which S2 \Bε(P±), P± := (0, 0,±1),
is conformal to the cylinder [−Λ1(ε) + 1,Λ1(ε) − 1] × S1 and choose w0 on this central part of
the collar to be such a conformal parametrisation, which we can assume to have the symmetries
as in (4.5), and which is chosen so that {±(Λ1(ε) − 1)} × S1 is mapped to the corresponding
boundary curve S2 ∩ ∂Bε(P±) ⊂ R

3.
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We then let Λ2(ε) be the unique number so that we can choose w0 on [X(�) − (Λ2(ε) −
1), X(�)] × S1 to be a conformal parametrisation of the annulus D 1

4
\Dε × {z0}, again

with the required symmetry and boundary conditions (4.5) and (4.6). Here we of course
assume that � = �(ε) > 0 is small enough so that Λ1(ε) + Λ2(ε) − 2 � X(�), but furthermore
ask that � is sufficiently small so that choosing w0|[Λ1(ε),X(�)−Λ2(ε)]×S1(s, θ) := (0, 0, 1 +

s−Λ1(ε)
X(�)−Λ1(ε)−Λ2(ε)

(z0 − 1)) as a linear parametrisation of the line connecting P+ and (0, 0, z0)
gives energy

E(w|[Λ1(ε),X(�)−Λ2(ε)]×S1) = π(z0 − 1)2(X(�) − Λ1(ε) − Λ2(ε))−1 � ε.

We finally complete w0 to a smooth map with the desired symmetries which can be done so
that on the intermediate regions [Λ1(ε) − 1,Λ1(ε)] × S1 and [X(�) − Λ2(ε), X(�) − (Λ2(ε) −
1)] × S1, we have |∇w0| � Cε for some universal C > 0.

To construct a suitable v component for the initial data, we first fix v∗ = v∗(v̄) so
that f(v∗) = 2. We then ask that v0 : [−X(�), X(�)] × S1 → R is a smooth map with
v0(s, θ) = v0(s) = v0(−s) so that v0(±X(�)) = 0, v0 ≡ v∗ on the central part |s| < Λ1(ε),
and |v′0| � 2 v∗

X(�)−Λ1(ε)
. For � = �(ε, v̄) > 0 small enough, we hence obtain that also E(v0) =

2π 4(v∗
0 )2

X(�)−Λ1(ε)
� ε. In total we hence obtain an energy of no more than

E(u0, g0) � 2 max
R

f · Area(D 1
4
\Dε) + f(v∗0)Area(S2) + Cε � 9π + Cε � 10π,

provided that we initially chose ε > 0 sufficiently small. �

We note that this choice of initial data assures that along the flow, the energy of
u(t) : (C , g(t)) → (N, gN ) remains below 10π. As the warping function f satisfies f � 1
everywhere, we thus obtain in particular an upper bound of 10π on the energy, and thus on
the area, of the component w(t) : (C , g(t)) → (Ñ , g

˜N ), allowing us to apply Lemma 4.1 (since
we chose C

˜N accordingly). We hence know that along the flow the component w(t) remains
disjoint from the set described in (4.3) and hence in particular that points on the central curve
{s = 0} are mapped to points which have Euclidean distance at least r � rmax from the z-axis.

While Lemma 4.1 already yields a lower bound of 2π on the area, and thus on the energy,
of the whole second component w, we now prove that already the restriction of w to a small
central region of the domain will need to have at least energy 2π.

Lemma 4.4. Let w : C = [−1, 1] × S1 → (Ñ , g
˜N ) be any map with symmetries and boundary

conditions as in (4.5) and (4.6) which satisfies (4.3) and which is so that |w| � rmax on {0} × S1.
Let now G� be any metric on C as described in (A.1) and let (s, θ) ∈ [−X(�), X(�)] × S1 be the
corresponding collar coordinates, where we assume that � is small enough so that X(�) � 8.
Then we have a lower bound on the energy of the restriction of w to the central part of

E(w|{(s,θ):|s|�8}) =
1
2

ˆ 8

−8

ˆ
S1

(|ws|2 + |wθ|2) ρ2
˜N
dθ ds � 2π. (4.8)

Proof. If the image of w|{(s,θ):|s|�8} intersects the cone {p : ψ(p) = π
4 or ψ(p) = 3π

4 }, then
we know from the proof of Lemma 4.1 that the area of the image of this map in (Ñ , g

˜N ) is
at least 2π and hence so is its energy. Otherwise, the image of w|{(s,θ):|s|�8} is contained in
{p : |p| � rmax and ψ(p) ∈ (π4 ,

3π
4 )} which assures in particular that the radial component of

w(s, θ) = (r(s)eiθ, z(s)) is at least r(s) � rmax · sin(π4 ). As ρ
˜N � 1, we hence obtain that

E(w|{(s,θ):|s|�8}) �
1
2

ˆ 8

−8

ˆ
S1

|wθ|2 dθ ds � 16π · 1
2
r2
max > 2π, as rmax >

1
2
. �
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To decrease the energy of the map u = (v, w) into the warped product R ×f (Ñ , g
˜N ), the

flow thus wants to stretch out the v component so that the energy of w on this central part is
weighted with a small warping factor f(v). This stretched-out image of the v component will
in turn drive the degeneration of the metric as proven in Theorem 1.1.

We will obtain the required lower bound on L (u(t), C(σ(t))) in Lemma 4.6, where we will
use in particular that the v component must map the central region to the part of the line
where −f ′ is decreasing.

Lemma 4.5. Let (N, gN ) be defined as in (4.4) where f = f0(· − v̄) for some v̄ � 7 and
some smooth function f satisfying Assumption 4.2. Let (u0, g0) be initial data as obtained in
Lemma 4.3 and let (u = (v, w), g = G�) be the corresponding solution of (1.1). Then on the

whole existence interval, we have � � �2(v̄) := 5π2

v̄2 and furthermore

v(s) � v̄ + 1 for every |s| � 8, (4.9)

where (s, θ) are the collar coordinates of (C , g).

Proof. Lemma 4.1 assures that at any time the energy of w : (C , g) → (Ñ , g
˜N ) is at least 2π

and hence 10π � E(u, g) � minC f(v) · 2π = 2πf(max v). This ensures that f(max v) � 5 and
hence max v � v̄ + 1. As v(±X(�)) = 0, we hence get

2v̄ � 2max v �
ˆ X(�)

−X(�)

|v′| ds � (π−1E(u, g))
1
2 · (2X(�))

1
2 � (20X(�))

1
2 ,

and thus π2

� � X(�) � 1
5 v̄

2, which implies the first claim of the lemma. This estimate ensures
in particular that X(�) � 8 for v̄ � 7. By Lemma 4.4, thus already the restriction of w to the
central region {(s, θ) : |s| � 8} must have energy at least 2π and hence min[−8,8] f ◦ v � 5. As

|f ′| � 1
8 and v(x) = v(−x), we conclude that osc

[−8,8]
f ◦ v � 1

8

´ 8

0
|v′| ds � 1

8 · ( 1
2πE(u, g))

1
2 · √8 �√

5
8 . Therefore, max[−8,8] f(v(s)) � 6 and hence v(s) � v̄ + 1 for every |s| � 8 as claimed. �

We are now in a position to prove that the image of maps as considered above stretches out
as required in the setting of our main results.

Lemma 4.6. For any c3,Λ > 0 and δ ∈ (0, 1), respectively, c3,Λ, α > 0, there exist �1, c0 > 0
such that the following holds true.

Let (N, gN ) be defined as in (4.4) for a warping function f = f0(· − v̄), v̄ � 7, where f0

satisfies Assumption 4.2 either with decay (i) (for c3,Λ, δ) or decay (ii) (for c3,Λ, α). Let
u : (C , g = G�) → (N, gN ) be a map with tension ‖τg(u)‖L2(C ,g) � 1 and energy E(u, g) � 10π
for which (4.8) and (4.9) hold and suppose that � � �1. Then in the case that f0 has polynomial
decay

vmax := max
C(�)

v � c0 �
− 1

4 (1+δ), (4.10)

while in the case that f0 has exponential decay

vmax := max
C(�)

v � c0 log(�−1). (4.11)

Proof. The v component of the tension field is given in collar coordinates (s, θ) by

τg(u)v = ρ−2∂ssv − f ′(v) eg(w), (4.12)
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where eg(w) = 1
2 |dw|2g denotes the energy density of w : (C , g) → (Ñ , g

˜N ). As the symmetry
of v ensures that ∂sv(0) = 0, we can integrate (4.12) over ([0, s] × S1, ρ2(ds2 + dθ2)) to obtain
that

−2π∂sv(s) = −
ˆ s

0

ˆ
S1

∂ssvρ
−2 dvg = −

ˆ s

0

ˆ
S1

f ′(v) eg(w) + τg(u)v dvg

� −f ′(vmax)E(w|[0,min(s,8)]×S1) − Area([0, s] × S1, g)
1
2 ,

where we use that ‖τg(u)‖L2(C ,g) � 1 and that v([−8, 8]) is contained in [v̄ + 1,∞) where −f ′

is decreasing. Combined with (4.8) and (A.6), we hence conclude that

−∂sv(s) � − 1
2f

′(vmax) − ρ
1
2 (s)(2π)−

1
2 for s � 8

and −∂sv(s) � −ρ
1
2 (s)(2π)−

1
2 for |s| � 8. Using (A.6) as well as that X(�) � π2

� − C, we get

vmax � − 1
2 (X(�) − 8)f ′(vmax) − (2π)−

1
2

ˆ X(�)

0

ρ
1
2 (s) ds � −4�−1f ′(vmax) − 4�−

1
2

= −4�−1f ′
0(vmax − v̄) − 4�−

1
2 � 4(−f ′

0(vmax)�−1 − �−
1
2 ),

(4.13)

where we use that � ∈ (0, �1) for a sufficiently small �1 and that −f ′
0 is decreasing on [1,∞).

We first note that for �1 ∈ (0, 1) chosen sufficiently small, we must have that vmax � Λ.
Indeed, as vmax � v̄ + 1 � 1 we would otherwise have that −f ′

0(vmax) � −f ′
0(Λ) = c > 0,

where c = c3( 2
1+δ − 1)Λ− 2

1+δ , respectively, c = c3α. Hence (4.13) would imply that Λ > vmax �
4c�−1 − 4�−

1
2 which leads to a contradiction as � � �1 for sufficiently small �1.

Suppose first that f0 as in part (i) of Assumption 4.2. If − 1
2�

−1f ′
0(vmax) � �−

1
2 , then (4.13)

gives

vmax � −2�−1f ′
0(vmax) = 2c3( 2

1+δ − 1)v
− 2

1+δ
max �−1,

which implies that vmax � c0�
− 1

4 (1+δ) for some c0 = c0(δ, c3) > 0 as 4
1+δ � 1 + 2

1+δ . This
establishes the claim (4.10) in this case. Conversely, if − 1

2�
−1f ′

0(vmax) � �−
1
2 , then we get

2�
1
2 � −f ′

0(vmax) = c3( 2
1+δ − 1)v

− 2
1+δ

max ,

which again implies that (4.10) holds true for some c0 = c0(δ, c3) > 0.
Suppose now that f0 decays instead exponentially as in part (ii) of the assumption. We hence

know that −f ′
0(vmax) = αc3e

−α(vmax−Λ). If − 1
2�

−1f ′
0(vmax) � �−

1
2 , then (4.13) yields

vmax � 2αc3�−1e−α(vmax−Λ) = ce−αvmax�−1, for some c > 0.

This implies in particular that e2αvmax � c̃�−1 for some c̃ > 0, which, for sufficiently small �1,
yields the claim. Otherwise −f ′

0(vmax) � 2�
1
2 which again yields that vmax � c log(�−1) for some

c > 0 that depends only on α,Λ, c3, provided that �1 is sufficiently small. �

We can now prove the first part of Theorem 1.3 as follows. Let δ ∈ (0, 1) be any fixed number
and let f = f0(· − v̄) for f0 as in Assumption 4.2 with polynomial decay (i) (for some c3,Λ > 0).
We first observe that the sectional curvature of (N, gN ) is bounded by a constant κ̄ which is
independent of v̄ and recall that also the numbers �1 > 0 and c0 > 0 obtained in Lemma 4.6
do not depend on v̄. We furthermore fix E0 = 10π and ε0 = 1 and let now �̄ > 0 be the number
obtained in Theorem 1.1 corresponding to this choice of κ̄, E0, δ and ε0, where we stress that
�̄ is independent of v̄ which we have yet to choose.

Theorem 1.1 hence assures that any solution of (1.1) that satisfies the assumptions (i) (for this
�̄) and (ii) of the theorem must degenerate in finite time. We now finally choose the parameter v̄
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by which we shift the warping function so that �2(v̄) � �̄ holds true for the number �2(v̄) = 5π2

v̄2

obtained in Lemma 4.5. Choosing our initial data (u0, g0) as in Lemma 4.3, we obtain from
Lemma 4.5 that the resulting solution (u, g) satisfies the first assumption of Theorem 1.1
for every time in the maximal existence interval [0, T ). This lemma also assures that (4.9)
is satisfied for every t ∈ [0, T ), while Lemma 4.4 implies that (4.8) holds true. We can thus
apply the first estimate (4.10) from Lemma 4.6 to conclude that also the second assumption of
the theorem is satisfied. Hence Theorem 1.1 implies that the solution of Teichmüller harmonic
map flow for any such initial data must degenerate in finite time as claimed in the first part of
Theorem 1.3.

We finally construct a compact target for which solutions of (1.5) degenerate in finite time.
For this we will modify the construction of Topping [16] so that the resulting warped product

(Nc, gNc
) = (T 2, γ) ×F (N̂ , g

̂N )

contains a totally geodesic submanifold Σ which is isometric to [0,∞) ×f (N̂ , g
̂N ), for a

coupling function f = f0(· − v̄), v̄ � 7, where we now ask that f0 is as in Assumption 4.2 with
exponential decay (ii) for α = 2π, see below for the precise choice of (Nc, gNc

). Here (N̂ , g
̂N ) is

the 3-torus obtained by identifying opposite faces of a suitably large cuboid in (Ñ , g
˜N ) around

the origin. We note that alternatively one could also construct such a warped product with a
sphere as done in [16] to obtain a target for which Theorem 1.3 holds.

To obtain the existence of a suitable solution of the flow (1.5), we first note the following
remark.

Remark 4.7. For any � ∈ (0,∞), there exists a harmonic map u� from ([−1, 1] × S1, G�)
to Σ which satisfies the assumptions of Lemma 4.6. Indeed such a map can, for example, be
obtained as a limit as t → ∞ of a solution of the classical harmonic map flow for an initial map
u0 chosen as in Lemma 4.3.

This allows us to obtain a solution (u�(t), G�(t)) of the rescaled flow (1.5) for which we can
now argue exactly as in the proof of the first part of Theorem 1.3 to conclude that it must
degenerate in finite time, except that we now apply Theorem 1.2 instead of Theorem 1.1 (and
of course choose �̄ accordingly) and that we use the second estimate (4.11) of Lemma 4.6
instead of the first estimate (4.10) of that lemma. As Σ is a totally geodesic submanifold of
our compact target, this hence yields an example of a solution to (1.5) into a compact target
that degenerates in finite time as claimed in the second part of Theorem 1.3.

We finally explain how such a target can be chosen: The torus component (T 2, γ) of (Nc, gNc
)

is exactly as in [16], and, as in [16], we consider the submanifold Σ = {z = 1
w , w ∈ (0, 1]} ×F

(Ñc, g˜Nc
), which we recall is totally geodesic if the coupling function F satisfies ∂xF |{x=0} = 0

with respect to the coordinates x = 1
w − z, y = z used in [16]. We choose F to be of the form

F (x, y) = h(x + y − v̄)e−2π(x+y−v̄−Λ)
(
sin 2π

(
x− 1

8

)
+
√

2
)

+ k(x + y − v̄) + 1,

for smooth functions h, k � 0, where we note that the case h ≡ 1 and k ≡ 0 would correspond
to the coupling function used in [16]. For our construction, we need ∂xF |{x=0} = 0, that is,

k′(v) + e−2π(v−Λ)
√

2
2 h′(v) = 0, (4.14)

as well as that f0(v) := F (0, v + v̄) = h(v)e−2π(v−Λ)
√

2
2 + k(v) + 1 satisfies Assumption 4.2

with decay (ii). Suitable functions h, k can, for example, be obtained as follows: We first select
k so that for c4 chosen below and some Λ = Λ(c4) > 0, we have k ≡ 7 on (−∞, 0], k ≡ 0 on
[Λ,∞) and so that the derivative of k satisfies 0 � −k′ � eπc4 on all of R with −k′ ≡ e

π
2 c4 on

[12 ,
3
4 ], −k′ ≡ 1

4c4 on [1,Λ − 1] as well as −k′′ � 0 on [1,Λ].
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We then set h(v) :=
√

2
´ v

0
e2π(t−Λ)|k′(t)|dt, which ensures not only that (4.14) is satisfied,

but also that f0 has the behaviour on (−∞, 0] and [Λ,∞) required in Assumption 4.2. As
(4.14) furthermore implies that −f ′

0(v) =
√

2πe−2π(v−Λ)h(v) � 0 and as a short calculation
shows that for c4 sufficiently small also −f ′

0(v) � 1
8 for all v ∈ R, it remains to check that

−f ′′
0 � 0 on [1,∞) which is equivalent to h′ � 2πh. This can be easily seen as the choice of k

ensures that 2πh(1) � h′(1) and that 2πh′ − h′′ � 0 on [1,∞).

Appendix

A.1. Teichmüller harmonic map flow from cylinders

Here we recall the key features of the definition of the flow for cylindrical domains, see [8] for
more details. We recall that horizontal curves of metrics on C = [−1, 1] × S1 are described in
terms of hyperbolic metrics G� which are given by

G� = f∗
�

(
ρ2
�(ds

2 + dθ2)
)
, f� : C → [−X(�), X(�)] × S1 for X(�) = 2π

� (π2 − arctan( �
d )), (A.1)

where f� are the smooth diffeomorphisms defined in [8, Lemma 2.4]. Here d > 0 is a fixed
number which corresponds to the choice of uniformisation one uses to represent conformal
classes by hyperbolic metrics with boundary curves of constant geodesic curvature, cf. [9], and
can be characterised by

d = kG�
|∂M · LG�

({±1} × S1) or equivalently by d2 = LG�
({±1} × S1)2 − �2. (A.2)

Horizontal curves of metrics are then given by one-parameter families of metrics of the form
G�(t), in general pulled back by a fixed diffeomorphism.

While for Teichmüller harmonic map flow from closed surfaces, one evolves the metric
orthogonally to all diffeomorphisms, and hence by a horizontal curve, for the flow from
cylinders, one needs to impose a three-point condition for the map component on both
boundary curves. This forces us to additionally evolve the metric component of the flow in
the direction of a six-parameter family hb,φ of diffeomorphisms, whose restrictions to the
boundary hb,φ|{±1}×S1 are given by Möbius transforms. As we can assume without loss of
generality that g(0) is of the form h∗

b0,φ0
G�0 , the metric component of the flow is hence given

by a curve g(t) = h∗
b,φG�(t) that evolves by (1.1), respectively, (1.5), now with Pg denoting the

L2-orthogonal projection onto the tangent space of the set of admissible metrics {h∗
b,φG�}. This

tangent space is given by the L2-orthogonal sum Re(H(g)) ⊕ {L(h∗
b,φX)g : X ∈ X}, where X is

the six-dimensional space of vector fields generating the diffeomorphisms hb,φ, and H(g) is the
space of holomorphic quadratic differentials on the cylinder which are real on the boundary.
As a result, for the flows (1.1) and (1.5) from cylinders, the evolution on � is determined by
the projection of the real part of the Hopf differential Φ(u, g) onto Re(H(g)). In the special
case that Φ itself is holomorphic in the interior of the cylinder as encountered in the proof of
Theorem 1.2, we hence simply have d�

dt = − 2π2

� Re(b0(Φ)), where b0 is the principal part of the
Fourier expansion of Φ.

A.2. Properties of hyperbolic collars

In this appendix, we collect well-known results on hyperbolic collars that are used throughout
the paper, including the classical collar lemma

Lemma A.1 (Keen–Randol [6]). Let (M, g) be a closed oriented hyperbolic surface and let
σ be a simple closed geodesic of length �. Then there is a neighbourhood C(σ) around σ, a
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so-called collar, which is isometric to the cylinder [−X(�), X(�)] × S1 equipped with the metric

ρ2(s)(ds2 + dθ2) where ρ(s) = ρ�(s) = �
2π cos ( �s

2π )
−1

and X(�) = 2π
� (π2 − arctan(sinh( �

2 ))).

Throughout the paper we use the following estimates on hyperbolic cylinders with � ∈
(0, arsinh(1)) as considered in (2.2) and (2.3) that hold true for constants that depend at
most on the numbers c̄1,2 from (2.3). We have a uniform upper bound on ρ(s), say ρ(s) � C3,
and thus also on |∂s log(ρ))| � ρ allowing us in particular to bound

ρ(s) � eC3|s−s′|ρ(s′) for any s, s′ ∈ [−X(�), X(�)]. (A.3)

For points for which ρ is small, we use instead that |∂s log(ρ))| � ρ also implies that

e−1 · ρ(s0) � ρ(s) � e · ρ(s0) for all s, s0 ∈ [−X(�), X(�)] with |s− s0| � e−1ρ−1(s0). (A.4)

Indeed, if for any s0, the maximal number h > 0 for which the above estimate holds
true on the interval I = [s0, s0 + h] were less than min(e−1ρ−1(s0), X − s0), then 1 =
| log(ρ(s0 + h)) − log(ρ(s0))| � h supI ρ � heρ(s0) < 1 would lead to a contradiction.

We shall also use that for any 0 � 2� � ε < injg(X(�)), the ε-thin part of such a hyperbolic
collar is described in collar coordinates by (−Xε(�), Xε(�)) × S1, where

Xε := 2π
�

[
π
2 − arcsin

(
sinh( �

2 ) · (sinh ε)−1
)]

and hence so that
C

ε
� X(�) −Xε(�) �

c

ε
(A.5)

for some C, c > 0. A short calculation furthermore shows that
ˆ X(�)

0

ρ
1
2 � 2

√
2π �−

1
2 and Area([0, s] × S1) = 2π

ˆ s

0

ρ2 � 2πρ(s). (A.6)
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